If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+32t-147=0
a = 16; b = 32; c = -147;
Δ = b2-4ac
Δ = 322-4·16·(-147)
Δ = 10432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10432}=\sqrt{64*163}=\sqrt{64}*\sqrt{163}=8\sqrt{163}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{163}}{2*16}=\frac{-32-8\sqrt{163}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{163}}{2*16}=\frac{-32+8\sqrt{163}}{32} $
| 11y-9-7+22y=12y=9y=8 | | 34-7x=15+34 | | b-(-29)=41 | | -336=3n+8(1+5n) | | 4b+3=−9 | | 19×4c=17 | | 0.9=(x/x+3) | | 8(2m-1)=56 | | 5x–3x+5=19 | | -6+5w=34 | | 3-4x=-10x+15 | | 42x-84=6x+24 | | 3a-9=8a+6 | | -7/10y=18 | | 32=12+4(x-3) | | -6x-4=0.5x-4 | | x^2+2x-20=-2x+12 | | 50*v=62 | | 0.95x+0.5(10-x)=10(113) | | 60-(7x+9)=7(x+3)+x | | -6c+-4=0 | | 4x+15+10x-3=180 | | (x+10)=(4x-36) | | 16k=-11 | | 4x+15+10x-3=90 | | x^2+22x=33 | | -6x-4=1/2x-4 | | 1=7+1x | | m+7=-3+6m | | 3x+x+5=8x-4x+5 | | d+2d=450 | | x^2+22=33 |